Bienvenidos. Este blog está dedicado a la Microbiología pero en general cualquier tema científico de interés tambien puede aparecer. El contenido de este blog es estrictamente científico y docente, por lo que no es un consultorio de salud. No estoy ni capacitado ni autorizado para responder a consultas de carácter médico-sanitario que expongan casos personales. Las imágenes que aparecen están sacadas de sitios públicos de la web y se indica su origen o basta cliquear sobre ellas para saberlo, pero si hay algún problema de copyright, por favor indicarlo en comentarios y se retirarán.

Para ir al blog de
PROBLEMAS DE MICROBIOLOGIA o al PODCAST DEL MICROBIO , pincha sobre el nombre.

También puedes ir al Blog de Innovación Docente

martes, 28 de noviembre de 2017

¿Podrías acabar con un alien utilizando CRISPR?



Sin duda, Alien es el endoparásito más famoso. Una vez que el facehugger ha cumplido su trabajo no hay manera de sacar al embrión del hospedador. Éste se desarrollará y finalmente encontrará su camino hacia fuera.

Hay ciertas bacterias patógenas que se comportan como auténticos "aliens" ya que son parásitos intracelulares. Se introducen en las células y una vez allí se multiplican hasta que acaban con ellas. Los patógenos intracelulares suponen un problema cuando hay que tratar las infecciones que provocan, ya que es difícil para los antibióticos alcanzar el interior de nuestras células. Este problema se hace mucho mayor si esas bacterias parásitas son además resistentes a los antibióticos. ¿Cómo podemos deshacernos de ellas?

En un reciente artículo del Trends in Biotechnology, Adrienne C. Greene propone que se pueda utilizar la tecnología CRISPR para desarrollar un nuevo tipo de sustancias antimicrobianas que se podrían adaptar al patógeno que deben eliminar, aunque éste haya desarrollado una resistencia antimicrobiana, y que además fueran totalmente específicos evitando así dañar a la microbiota comensal. Todo muy bonito pero hay un pequeño problema. ¿Cómo hacer llegar un complejo macromolecular de RNA y proteína con un tamaño de unos 160 kD hasta el interior de una bacteria objetivo? Un abordaje que se ha intentado con éxito es el siguiente. En primer lugar diseñar un complejo CRISPR/RNA capaz de eliminar un gen esencia de un patógeno. Después codificar ese complejo CRISPR/RNA en un fásmido. De esa forma el complejo queda encapsulado en una cápsida de fago que luego es usado para infectar a la bacteria objetivo. Una vez dentro, el complejo CRISPR/RNA se encarga de destruir genes esenciales y acabar con el patógeno.

Ahora esta idea se quiere llevar un paso más allá combiando los fásmidos CRISPR y la nanotecnología para eliminar patógenos intracelulares. El problema a solventar es cómo dirigir a esos fásmidos hasta las células objetivo y hacerlos entrar para que acaben con la bacteria. En la figura de abajo se muestra la idea. En A tenemos el fásmido que codifica para el complejo CRISPR/RNA y que es específico de la bacteria patógena. En B, los fásmidos son encapsulados en partículas de sílice. Dichas partículas serían funcionalizadas con una membrana (C) en la que se dispondrían péptidos y proteínas diseñadas para unirse a las células infectadas (D). Una vez dentro de la célula los fagos serían liberados y se unirían a las bacterias patógenas (E) introduciéndoles el complejo CRISPR y matándolas (F) sin afectar a la célula hospedadora.



La idea tiene muchas ventajas. Los fagos son muy específicos por lo que no afectarían a la microbiota normal. Además, se podrían diseñar las partículas para que solo reconocieran a las células infectadas y no a otras. Pero también es verdad que hay un poco de "cuento de la lechera". La nanotecnología necesaria para elaborar esas partículas funcionalizadas donde irán encapsulados los fagos todavía no existe. El problema es que los fagos son muy variables en morfología y un diseño de cápsula que permita la utilización para un fago no tiene porque valer para otro. Otro problema es encontrar el fago que sea capaz de unirse al patógeno que queremos eliminar. Para ello se necesitan avances en las tecnologías de cribado (screening) de fagos que permitan encontrar una aguja en un pajar de forma rápida, sencilla y barata.

Como dice el autor del artículo, la pregunta que queda al final es cómo adaptar una idea que funciona en el laboratorio al tratamiento de las futuras amenazas infecciosas. Y quien sabe, quizás diseñar en el futuro un fásmido anti-alien.

martes, 21 de noviembre de 2017

El retorno de las hormigas-zombi

Hormigas-zombi


Ya hemos hablado en este blog del hongo parásito Ophiocordyceps unilateralis también conocido como el hongo que convierte a las hormigas en zombis. Recientemente se ha publicado un trabajo en la revista PNAS que ha permitido una mejor comprensión de cómo hace el hongo para manipular el comportamiento de su hospedador.

Maridel Fredericksen, una estudiante del grupo liderado por David Hughes ha estudiado las interacciones a nivel celular entre el hongo y las células de los tejidos de la hormiga. Para ello lo que han hecho es coger hormigas y parasitarlas, o bien con O. unilateralis o con el hongo Beauveria bassiana. Este último es un hongo entomófago que invade todos los tejidos del insecto pero que no modifica su comportamiento (y que tiene interesantes aplicaciones biotecnológicas como bioinsecticida). Después han cogido las hormigas parasitadas y las han cortado en rebanadas con un grosor de 50 nanómetros. Luego han hecho fotografías microscopicas de cada una de esas rebanadas y posteriormente han reconstruido en 3D lo que han observado. ¿Parece fácil? No lo es tanto. Para hacer la reconstrucción 3D se tenían que manejar unas 2000 imágenes en las cuales hay que distinguir entre las células del hongo y las células de la hormiga. Asumiendo que una persona entrenada puede hacer dicho trabajo en 20 minutos (es mucho asumir) eso quiere decir que necesitaríamos todas las horas de un mes completo para completar el análisis. En lugar de eso lo que han hecho es colaborar con un grupo de Inteligencia Artificial para poder enseñar a un ordenador (lo que se denominan procesos "deep-learning") a distinguir entre las células fúngicas y del insecto para que posteriormente realizara la reconstrucción.


Reconstrucción tridimensional de la red fúngica que rodea las fibras musculares del insecto. En A se representa una fibra del músculo abductor de la mandíbula (en rojo) rodeado por 25 cuerpos hifales (amarillo). Clickear en la imagen para verla más grande. Las conexiones entre las células del hongo son pequeños tubos. Varias de las células tienen hifas en los polos y algunas corren paralelas a la fibra muscular (cabeza de flecha en recuadro interior). En el vídeo puede verse como se ha realizado esta reconstrucción. En B se muestran dos proyecciones diferentes de la reconstrucción. Las fibras musculares se encuentran en azul y los cuerpos fúngicos en rojo. Fuente de la imagen: Fredericksen et al. 2017.


Una vez realizadas las reconstrucciones lo que han visto es que en el caso de B. bassiana las hifas invaden todos los tejidos del insecto indistintamente. Pero en el caso de O. unilateralis lo que se han encontrado es que el micelio del hongo crece por todo el interior del insecto formando una red interconectada por unas estructuras especializadas a las que han denominado CATs por conidial anastomosis tubes. Las hifas rodean las fibras musculares de la hormiga pero sin destruirlas (puede verse la reconstrucción en este vídeo). También han visto que el hongo destruye las neuronas motoras de la hormiga asegurándose así el control muscular. Finalmente, han visto que el hongo no invade el cerebro de la hormiga. Lo que hace el hongo es controlar al hospedador de manera periférica al parecer secretando una serie de sustancias. Según Hughes, la hormiga se convierte en una marioneta en el que las cuerdas serían las hifas del hongo. Los investigadores creen que el hongo no ataca el cerebro de la hormiga hasta que se ésta no realiza el mordisco final en el envés de la hoja donde quedará fijada.

martes, 14 de noviembre de 2017

Teixobactina: cuando lo artificial es mejor que lo natural

Eleftheria terrae, una betaproteobacteria productora del antibiótico teixobactina. Origen de la imagen: Science News



En el año 2015 se descubrió la teixobactina, un nuevo tipo de antibiótico producido por la bacteria Gram negativa Eleftheria terrae. Lo más sobresaliente de la teixobactina era que su mecanismo de acción era distinto al de otros antibióticos. Inhibía la función de los lípidos II y III en el transporte de los precursores del peptidoglicano desde el citoplasma al exterior de la célula. Esa especificidad tan grande permitía suponer que no iba a ser fácil que aparecieran resistencias frente a dicho antibiótico.

Mecanismo de actuación de la teixobactina. Clikear para ampliar. A la izquierda se representa une esquema de la bacteria Gram negativa Eleftheria terrae secretando el antibiótico y éste uníéndose a las moléculas objetivo (rectángulo con la palabra TEIX). A la derecha tenemos una visión ampliada del mecanismo de acción sobre el lípido II y el lípido III que se encuentran localizados en la membrana plasmática. El interior celular estaría en la parte inferior y el exterior en la superior. En el esquema representan de manera simplificada los pasos de síntesis de los monómeros que formarán el peptidoglicano (hexágonos azules y verdes) y de los monómeros que formarán los ácidos teicoicos (elipses rojas y azules).  También se muestra el sitio de unión de la vancomicina (rectángulo rojo), que aunque afecte a la misma molécula, lo hace en un lugar diferente. Fuente: Sci-news.com 


Pero hay otros factores a tener en cuenta para que una molécula que se descubre de una bacteria del suelo llegue hasta los estantes de las farmacias. Uno de los principales es la cantidad de antibiótico que se puede obtener de un cultivo del microorganismo productor. Y aquí había dos inconvenientes: el primero es que Eleftheria terrae no es precisamente un buen microorganismo industrial de fácil crecimiento, el segundo es que la teixobactina no era sencilla de purificar a partir de los cultivos de dicha bacteria.

Evidentemente más de un grupo se ha puesto a buscar formas de producir mayor cantidad del antibiótico. Una por ejemplo es clonar los genes responsables de la biosíntesis del antibiótico en otro microorganismo que sea mucho más fácil de crecer en condiciones industriales. Otros han buscado formas de purificar más eficientemente el antibiótico. Y finalmente hay otra forma: sintetizar la teixobactina de forma artificial.

La síntesis de antibióticos artificiales no es nueva. El cloranfenicol originariamente fue descrito como un antibiótico producido por Streptomyces venezuelae, pero ahora resulta mucho más barato producirlo enteramente mediante síntesis química. Quizás pueda suceder lo mismo con la teixobactina, aunque sea un depsipéptido macrocíclico algo complejo. De hecho, las primeras pruebas para sintetizar químicamente la teixobactina no funcionaron ya que uno de los aminoácidos precursores, la enduracidina, era muy difícil de obtener.

Síntesis artificial del cloranfenicol. Fuente: Michigan State University


Pero el grupo liderado por Ishwar Singh, de la Universidad de Lincoln en el Reino Unido ha encontrado que la enduracidina puede ser sustituida por otro tipo de aminoácidos, incluyendo aminoácidos apolares como la leucina o la valina. Lo que se obtiene no es exactamente la teixobactina natural ya que su composición química es distinta, pero las nuevas moléculas funcionan igual de bien frente a las bacterias. Pero las ventajas son evidentes. Los aminoácidos utilizados son muchísimo más baratos y esto permite pensar en que probablemente se establecerá una ruta de síntesis química para producir industrialmente los análogos de teixobactina. Eso permitirá que en breve se pueda pensar en diseñar ensayos clínicos con humanos.

Teixobactina natural (izquierda) y teixobactina sintética (derecha). En rojo se indican  los D-aminoácidos y en negro los L. En azul se indica la posición de la enduracina en la teixobactina natural. En la artificial, dicho aminoácido se ha sustituido por la leucina. Fuente: Parmar et al. 2017.


Además, este avance ha permitido entender en parte como puede ser el mecanismo de acción de la teixobactina. Hasta ahora se pensaba que los aminoácidos catiónicos que presenta eran los responsables de su actuación, pero los aminoácidos usados no están cargados, así que eso parece indicar que las cargas catiónicas no están involucradas en la unión al objetivo molecular. Una nueva vía de investigacións e abre.

martes, 7 de noviembre de 2017

Altruismo microbiano

Chlorochromatium aggregatum. Las bacterias autótrofas epibiontes rodean a una betaproteobacteria móvil. Lo único que se ve de ella es el flagelo a la derecha (Fuente: Small Things Considered)


Un consorcio microbiano es una comunidad formada por un pequeño número de especies de microorganismos, generalmente dos. Su relativa simplicidad es una ventaja para su estudio experimental en el campo de la ecología microbiana. Hay varios ejemplos de consorcios microbianos, el más famoso es el que está representado en la fotografía de arriba y que se denomina Chlorochromatium aggregatum (ahora C. chlorochromatii). Está formado por unas bacterias vede del azufre fotoautótrofas (el epibionte) que rodean a una betaproteobacteria flagelada quimiorganotrofa.

En un reciente artículo de Nature Microbiology describen el estudio metagenómico de un consorcio microbiano que degrada la celulosa en condiciones aeróbicas y que está presente durante el compostaje de residuos agrícolas. Lo que han encontrado es que la dinámica de la comunidad es consistente con el desarrollo de una sucesión de microorganismos heterótrofos. Es decir, primero aparecen una serie de microorganismos degradadores que van a descomponer los polímeros biológicos en moléculas más simples, a continuación otros microorganismos degradadores y finalmente tendremos a los productores de ácidos húmicos.

Las diferentes etapas del compostaje. En la primera parte (1 a 2 semanas) intervienen los mesófilos. Posteriormente microorganismos termófilos que completan la degradación de la materia orgánica. Finalmente tenemos la etapa de maduración con la formación de los ácidos húmicos.


Lo que han encontrado estos investigadores es que al principio se establece una población pionera a la que han denominado "Candidatus Reconcilibacillus cellulovorans" y que posee un "cluster" genético que codifica para diversas hidrolasas glicosídicas, las enzimas responsables de las primeras etapas de degradación de la celulosa. Eso indica que no hay un solo tipo de hidrolasas sino varios, por lo que hay varias reacciones degradadoras de la celulosa que pueden llevarse a cabo gracias a esa población pionera. Eso es una ventaja si consideramos que el material de partida que se debe compostar suele tener un origen diverso. Pero además, dichas enzimas se organizan en grandes complejos macromoleculares muy estables que permanecen durante todo el proceso de compostaje aunque la población microbiana que los ha sintetizado ya no esté presente. Es decir, esos complejos multidominio poseen diversas capacidades celulolíticas y son una especie de “bien común” que va a beneficiar a toda la comunidad microbiana responsable del proceso de compostaje. Una lección de altruismo a pequeña escala.

Arriba (a). Abundancia relativa de las poblaciones microbianas dominantes al final de las dos semanas de compostaje. Muestras de DNA fueron recogidas a diferentes tiempos para la secuenciación metagenómica. Centro (b) Actividades de la Carboximeti-celulasa (rojo) y de la xilanasa (verde) a lo largo de los días que duró el experimento. Abajo (c) Abundancia relativa diaria de una de las poblaciones de Paenibacillaceae (rojo) comparado el resto del consorcio microbiano creciendo sobre celulosa. Nótese que las actividades enzimáticas permanecen aunque la población productora está muy disminuida. Fuente: Kolinko et al. (2017)


martes, 31 de octubre de 2017

Sentido y sensibilidad (bacterianos)



La formación de biofilms bacterianos (o biopelículas) es un área en la que están trabajando varios grupos investigadores. Uno de los motivos es porque el 80% de las infecciones resistentes a los antibióticos son causadas por bacterias que forman biofilms. Así que conocer cómo se forman los biofilms podría permitir el desarrollo de métodos para destruirlos de manera eficaz.

Uno de los organismos modelo para estudiar la formación de biofilms es la bacteria acuática Caulobacter crecentus. No es una bacteria patógena, y por ello es bastante fácil de trabajar con ella en los laboratorios. En el último número de Science se han publicado dos artículos sobre cómo hace esta bacteria para “sentir” una superficie a la cual adherirse.

Caulobacter viene al mundo como una bacteria nadadora (swarmer cell) que posee un flagelo en uno de los polos. El flagelo está acompañado de un par de pili que tienen la peculiaridad de ser retractables (pilus tipo IV). La célula nada y cuando encuentra una superficie adecuada lo que hace es pegarse a ella por el polo que tiene el flagelo. Entonces suceden unas cuantas cosas. Lo primero es que pierde el flagelo polar y a continuación comienza a secretar en ese mismo sitio un exopolisacárido pegajoso formando un botón adhesivo (holdfast). Una vez se ha fijado, en ese polo comienza a crecer una prosteca también denominada pedúnculo (stalk). En paralelo, el DNA comienza a replicarse y el cuerpo de la bacteria comienza a elongarse. Cuando su tamaño es del doble entonces se genera un flagelo en el polo que está libre, se reparte el cromosoma y comienza la división celular. Al final tendremos dos células: una fija al sustrato (stalked cell) que seguirá reproduciéndose y una célula nadadora que volverá a repetir el ciclo.

Ciclo de Caulobacter. Fuente de la imagen: Microbewiki


Lo que se describe en ambos artículos es que tanto el pilus como el flagelo son necesarios para que la célula sea "sensible" a su entorno y “sienta” que hay una superficie a la que adherirse. En el caso del flagelo lo que ocurre es que si choca contra la superficie su rotación se ve alterada y eso dispara una respuesta para adherirse. Lo han demostrado utilizando ensayos basados en dinámica de microfluidos y mutantes que eran defectivos en algunos de los componentes del flagelo. Si lo que les faltaba a los mutantes eran las partes externas del flagelo la adhesión no se veía alterada. Pero si lo que le faltaba eran las proteínas que forman el “rotor” y el “stator” entonces la adhesión no se efectuaba. En el caso del pilus lo que han visto es que si se altera el mecanismo de retractación la bacteria no es capaz de adherirse porque no se activa la producción del exopolisacárido.

Como hace Caulobacter para "sentir" una superficie a la que adherirse. Cuando una célula nadadora choca con una superficie, o bien su flagelo ve interrumpida su rotación, o bien su pilus ve inhibida su retracción, o ambos. Esto desencadena una cascada de eventos que estimulan la producción de un exopolisacárido que formará un botón de anclaje adhesivo (holdfast). Fuente: Science


Basado en el artículo: “The bacterium has landed

miércoles, 15 de marzo de 2017

En el principio... no había fosfato

La portada de Cell nos recuerda que las cerillas inicialmente usaban azufre en lugar de fósforo. Algo similar pudo haber sucedido con el origen de la vida.


En el campo de la evolución prebiótica una de las principales discusiones es decidir qué fue primero: el metabolismo o la autorreplicación. Es la típica situación del huevo y la gallina: necesitamos un metabolismo para replicar la información que codifica los componentes capaces de realizar ese metabolismo. Por simplificar, a los del metabolismo se les conoce como los defensores del Mundo Hierro/Azufre y a los de la autorreplicación como los defensores del Mundo RNA.

¿Qué fue primero? ¿La autorreplicación o el metabolismo? En la hipótesis del mundo RNA la capacidad de autorreplicación precede a la aparición de las enzimas y la aparición de las redes metabólicas. En la hipótesis metabólica, primero aparecen dichas redes y posteriormente las moléculas con capacidad replicativa (origen de la imagen: Phys.Org)


La hipótesis de "primero el mundo RNA" es muy atractiva porque en una misma molécula tenemos ambas funciones: replicativa y catalítica. Pero lo cierto es que cada vez se están acumulando más indicios que apuntan a que el metabolismo fue previo a la autorreplicación. El último es un artículo publicado en Cell por Joshua E. Goldford, Hyman Hartman, Temple F. Smith y Daniel Segrè y su título lo dice todo: Remnants of an Ancient Metabolism without Phosphate. Esta claro que si no hay fosfato no puede haber RNA, así que el metabolismo precedió al mundo RNA.

¿Fosfato? No, gracias. En la figura tenemos a cuatro de los compuestos semilla utilizados en el algoritmo para identificar las reacciones metabólicas primordiales. Los otros cuatro usados fueron el agua, el dióxido de carbono, el carbonato y el nitrógeno (fuente: Goldford et al. 2017)


La verdad es que el concepto de que el fosfato no sea necesario para el origen de la vida es muy atrevido. Desde pequeñitos nos enseñan que los bioelementos principales son seis: C,H,O, N, P y S. Y si atendemos a sus proporciones un mol de vida estaría compuesto por C1H1,8O0,5N0,2P0,03S0,02. Es decir, en un ser vivo, por cada dos átomos de azufre hay tres de fósforo. Para rematar, cuando estudiamos el metabolismo nos dicen que el ATP es la moneda biológica de energía gracias a sus enlaces fosfoester. Entonces ¿por qué han pensado estos investigadores que el fosfato no es necesario para el metabolismo primigenio?

Por una cuestión de química geológica básica. La accesibilidad geoquímica al fósforo es mucho menor que la del azufre. Así que con ese dato en mente se pusieron a mirar las rutas metabólicas en las que el f´sforo no hace falta. Pero no se centraron en las rutas de un puñado de organismos modelo. Lo que hecho es mirar en todas las rutas metabólicas conocidas en todos los seres vivos, lo que denominan un metabolismo a nivel "biosfera". También han tenido en cuenta que las reacciones de hoy, tan específicas y eficientes, debieron de evolucionar a partir de reacciones mucho menos específicas y con moléculas mucho más simples que las presentes. Utilizando herramientas computacionales de biología sintética usaron ocho moléculas simples que podrían estar presentes en la Tierra primigenia y que podrían reaccionar para formar otros compuestos. Esas ocho moléculas "semilla" eran el agua, el sulfihídrico, el dióxido de carbono, el ácido carbónico, el amoniaco, el nitrógeno, el formato y el acetato. La otra condición es que no debía de necesitarse fosfato. A continuación aplicaron lo que ellos llaman un algoritmo de expansión de red de interacciones (network expansion algorithm) para simular la aparición de una red de interacciones metabólicas a partir de dichos compuestos. Lo que hace el algoritmo es añadir metabolitos y reacciones iterativamente y "preguntarse" en cada iteración si con los productos obtenidos y los sustratos presentes, puede darse una nueva reacción que producirá nuevos productos. Al final se va estableciendo un grupo "nuclear" (core) de rutas metabólicas principales dentro de ese "metabolismo de la biosfera", entre ellas las rutas en las que intervienen los cofactores Hierro/Azufre y algunas rutas de biosíntesis de aminoácidos (en concreto G, A, D, N, E, Q, S, T, C, y H) y de ácidos carboxílicos. Para ellos, estas rutas representan un "fósil metabólico" basado en la bioquímica no-enzimática de los enlaces tioester.

El "núcleo metabólico" que no necesita fosfato. El algoritmo hace reaccionar a los compuestos simples (metabolitos "semilla", marcados en azul al fondo a la izquierda). Los metabolitos que aparecen van interconectándose a través de las reacciones en las cuales o bien son sustratos o bien productos. Los colores indican el tiempo (iteración) en el cual el metabolito aparece. Arriba a la izquierda vemos la escala temporal. Los metabolitos principales (piruvato, glutamato, glicina) se alcanzan al cabo de unas pocas iteraciones a partir de los metabolitos "semilla". (fuente: Goldford et al. 2017)


Pero no se han quedado ahí. Utilizando el mapa del "metabolismo de la biosfera" han eliminado todas las reacciones en las cuales interviene el fosfato e incluso han considerado aquellas reacciones en las que el fosfato no es esencial. Por ejemplo, la coenzima-A lleva fosfato en su composición, pero éste no interviene en su función, la parte importante de dicha molécula es el éster de azufre. De hecho, la coenzima-A puede ser sustituida por la panteteina. Al realizar estos cambios y aplicar el algoritmo la expansión de la red metabólica se incrementa hasta incluir tres veces más metabolitos, entre ellos cinco aminoácidos (K, R, L, V, y P), el uracilo y la ribosa

Metabolismo global sin fosfato. Al eliminar todas la reacciones en las que la intervención del fosfato es esencial (líneas grises) todavía queda una gran red de reacciones metabólicas. Las líneas rojas son las reacciones identificadas como "nucleares" (ver figura anterior). Las reacciones marrones son aquellas que son accesibles desde el "núcleo metabólico". Las azules y púrpuras aquellas que están acopladas a la coenzima-A o a las coenzimas de flavina/nicotinamida respectivamente. (fuente: Goldford et al. 2017)


Los autores reconocen que no pueden descartar otra interpretaciones y que quizás la rutas que usan fosfato pudieron evolucionar gradualmente y de manera paralela o consecutiva. Pero lo que parece claro es que estos resultados nos permiten intuir que el protometabolismo pudo estar basado en reacciones con el enlace tioester como portador de energía y que la diversidad de compuestos que se producen podrían ser los precursores sobre los cuales posteriormente aparecería toda la bioquímica de los ácidos nucleicos como portadores de información. Queda claro que todavía hay muchos huecos que rellenar en esta historia.




Esta entrada participa en la LXIII edición del Carnaval de Química, alojada en el blog ‘Cardescu Web‘ de @CienciaNformas

viernes, 17 de febrero de 2017

Tomando forma

Manos dibujándose de MC Escher (origen)


En la entrada "De la forma" comentamos la importancia evolutiva que tiene la forma de las bacterias y que la morfología bacteriana era mucho más diversa de lo que en un principio se pensaba.

Pero, ¿cómo se forma una bacteria? La verdad es que sabemos más bien poco ya que lo que se conoce se basa en el estudio de unas cuantas bacterias: los cocos Streptococcus pneumoniae y Staphylococcus aureus; los bacilos Escherichia coli y Bacillus subtilis; las curvas y espirales formadas por Helicobacter pylori, Caulobacter crecentus o Borrelia burgdorferi. Del resto de morfologías no se conoce mucho. Así que quizás habría que replantearse la pregunta y elaborar alguna más simple que sí podamos contestar. Por ejemplo:

En el aspecto de la morfogénesis ¿qué tienen en común todas las bacterias?
  • Todas tienen paredes de peptidoglicano (salvo los micoplasmas y los termoplasmas) y la forma viene dada por cómo está construida dicha macromolécula a nivel molecular. Así que no es de extrañar que el equipamiento bioquímico responsable de la síntesis de esa pared se haya conservado entre los diversos phyla bacterianos. A nivel molecular, ese equipamiento enzimático se coloca en una determinada “zona” de la bacteria y es allí donde ejerce su función. Es lo que podría denominarse una "síntesis zonal"


  • La maquinaria de síntesis de la pared debe de asegurar que se mantenga la forma y que se incremente el tamaño de la bacteria gracias a la elongación, pero también debe permitir la reproducción celular mediante la septación. Basta cambiar mínimamente la orientación de la síntesis de peptidoglicano para pasar de elongar a septar. Lo que sí es necesario es que ambos procesos deben de estar coordinados tanto en el espacio como en el tiempo para asegurar la supervivencia de la bacteria.


Maquinaria de síntesis de peptidoglicano en la bacteria Escherichia coli. La elongación la lleva a cabo el elongasoma y la división el divisioma. En ambos casos se necesita un armazón citoplasmático que va a dirigir la localización de la síntesis del peptidoglicano (color naranja) y que reclutaran los diversos componentes como los elementos de membrana que incluyen proteínas reguladoras y sintetizadoras de elementos precursores (color azul) y proteínas sintetizadoras y modificadoras del peptidoglicano (color rojo). De todas estas proteínas, las más conservadas en todos los grupos bacterianos son FtsZ (naranja) y FtsK (azul-4). Origen de la imagen: Amelia M. Randich e Yves V. Brun 2015


Podríamos decir que esas son las "reglas básicas" que toda bacteria tiene que seguir. Quizás, cada grupo bacteriano tenga además algunas reglas específicas que expliquen las diferencias morfológicas. O quizás, uno podría esperar que si dos bacterias tienen una forma bacilar será porque ambas siguen el mismo juego de reglas. El mejor ejemplo es Escherichia coli (Gram negativa) y Bacillus subtilis (Gram positiva). Ambas realizan la elongación gracias a que sus equipos enzimáticos se colocan en unas zonas que siguen una pauta espiral y así sintetizan el nuevo peptidoglicano siguiendo dicha pauta.

Incorporación del peptidoglicano en diferentes bacterias morfológicamente distintas. En A se representa la elongación, en B la división. Tanto en Escherichia coli como en Bacillus subtilis, las zonas de elongación se disponen a lo largo de una espiral. Cuando las células se van a dividir la síntesis zonal se localiza solamente en el centro de la bacteria. En el caso de Streptococcus pneumoniae, la elongación se produce al insertar nuevo material en el llamado anillo ecuatorial. Según se va insertando el nuevo material los anillos resultantes se separana señalando el futuro lugar de septación. En el caso de Staphylococcus aureus no parece haber elongación, tan sólo síntesis de peptidoglicano septal. Origen de la imagen Dirk-Jan Scheffers1 y Mariana G. Pinho. 2005.


El dato de que dos bacterias tan alejadas filogenéticamente entre sí, han resuelto el mismo problema de la misma manera puede apuntar a que dicha "solución" apareció hace mucho tiempo. Pero cuando se observa con detalle lo que ocurre en otros grupos taxonómicos (ver el árbol filogenético de la 1ª parte), lo que a primera vista parece una conservación evolutiva es más bien una convergencia evolutiva. Entre una y otra especie nos encontramos con una miríada de morfologías. Observar una convergencia evolutiva nos indica otra cosa distinta: si se reposiciona la maquinaria de síntesis zonal se pueden generar un gran diversidad de formas bacterianas todas ellas derivadas de la morfología bacilar. Por ejemplo, si la síntesis zonal se restringe a uno sólo de los polos podemos obtener una prosteca como la de Caulobacter crescentus. En cambio, si la síntesis zonal se distribuye a lo largo de la longitud de un filamento se pueden conseguir las ramificaciones que se observan en las Actinobacterias. Bastaría con usar las reglas básicas de diferente forma para obtener las diversas morfologías bacterianas.

Síntesis zonal del peptidoglicano y morfología bacteriana. En las Alfaproteobacterias prostecadas basta reposicionar la maquinaria de síntesis del peptidoglicano (en verde) para que aparezcan diferentes fenotipos. A: Caulobacter crescentus prosteca polar. B: Asticcacaulis excentricus, prosteca subpolar. C: Asticcacaulis biprosthecum prostecas bipolares. En D tenemos el fenotipo ramificado de la actinobacteria Streptomyces coelicolor. Origen de la imagen: David T. Kysela et al. 2016.


Combinando tecnologías genómicas de una sola célula (single-cell genomics) con las tecnologías de microscopía de alta resolución, el grupo de Yves Brunn ha conseguido estudiar la evolución de la prosteca entre las especies pertenecientes a los Caulobacterales. Observando el árbol filogenético que se muestra más abajo, puede verse que primero apareció la prosteca polar (presente en Caulobacter crescentus). En algunas especies esa prosteca se ha convertido en una zona especializada en la reproducción por gemación (Hirschia baltica) pero en otras lo que ha pasado es que se ha perdido y la bacteria ha vuelto a una morfología bacilar (C. segnis). En otras especies, la síntesis zonal se reposicionó de manera supolar (Asticcacaulis excentricus) y a partir de este grupo volvió a reposicionarse a bilateral aumentando su número (A. biprosthecum). Al examinar con más detalle dicha transición, lo que se encontraron es que hay una proteína, denominada SpmX, que es la responsable de coordinar la síntesis del peptidoglicano en la prosteca. Dicha proteína tiene una región que es diferente en cada una de esas especies y que determina la localización de la síntesis zonal

Arbol filogenético de los Caulobacterales y morfología celular. 1. prosteca bilateral, Asticcacaulis biprosthecum (Chao Jiang, Stanford University). 2. prosteca subpolar, Asticcacaulis excentricus (Chao Jiang, Stanford University). 3. prosteca polar, Caulobacter crescentus (Paul Caccamo, Indiana University). 4. prosteca polar, Maricaulis maris (Patrick Viollier, University of Geneva). 5. prosteca polar pequeña, Brevundimonas subvibriodes (Brynn Heckel, Indiana University). 6. Prosteca polar para reproducción por gemación, Hirschia baltica. Origen de la imagen: David T. Kysela et al. 2016.


¿Podría explicarse la gran diversidad de morfologías bacterianas en base a la síntesis zonal de peptidoglicano? Pues es muy probable que la combinación de métodos genómicos con las nuevas tecnologías microscópicas den lugar a nuevas aproximaciones experimentales que permitan dar respuesta a esa pregunta y estudiar porqué las bacteria son como son e incluso abordar el problema de relacionar la morfogénesis bacteriana y las fuerzas de selección que actúan sobre ella. Puede afirmarse que este campo de investigación va tomando forma

Esta entrada y su primera parte han sido traducidas y publicadas en el blog Small Things Considered