Bienvenidos. Este blog está dedicado a la Microbiología pero en general cualquier tema científico de interés tambien puede aparecer. El contenido de este blog es estrictamente científico y docente, por lo que no es un consultorio de salud. No estoy ni capacitado ni autorizado para responder a consultas de carácter médico-sanitario que expongan casos personales. Las imágenes que aparecen están sacadas de sitios públicos de la web y se indica su origen o basta cliquear sobre ellas para saberlo, pero si hay algún problema de copyright, por favor indicarlo en comentarios y se retirarán.

Para ir al blog de
PROBLEMAS DE MICROBIOLOGIA o al PODCAST DEL MICROBIO , pincha sobre el nombre.

También puedes ir al Blog de Innovación Docente

jueves, 31 de enero de 2008

Una imagen vale más que mil palabras

Eso es lo que pensaría cualquiera que de un paseo por la siguiente web: Journal of Visualized Experiments.

Cualquiera que se haya dedicado a la investigación experimental sabe que el trabajo de laboratorio tiene mucho de "truquito de cocina" o, como dicen en inglés, de "Know How". Se supone que los artículos científicos describen los protocolos experimentales de forma tal que cualquier otro investigador debería poder reproducirlo. Pero estoy convencido de que más de uno se ha sentido frustrado al experimentar en carne propia que eso no es así. Casi, siempre, la primera vez que repite un experimento de un artículo, es te no sale. Y sigue sin salir la segunda vez, y la tercera y la cuarta... . Y todo porque a lo mejor desconoce alguna "chorradilla" del tipo agitar el tubo suavemente en lugar de fuertemente.

Bueno, pues a alguien se le ha ocurrido la feliz idea de grabar un video de como hace las cosas y colgarlo en internet. En el fondo es la misma idea subyacente a cualquier programa de cocina de cualquier televisión. Pero en lugar de una sartén con aceite tenemos una cubeta de electroforesis con tampón TAE 1X.

La increíble bacteria menguante




Cualquier aficionado al cine de Ciencia Ficción habrá visto la película "El increíble hombre menguante" en la que el protagonista, debido a la exposición a una misteriosa niebla radioactiva, va menguando de tamaño progresivamente. Bueno, pues parece que ese proceso está pasando con otro tipo de ser vivo, o más bien podríamos decir que está pasando con su genoma.

Una serie de grupos españoles liderados por la Dra Latorre , llevan tiempo investigando la simbiosis entre bacterias y áfidos (más conocidos como pulgones). En concreto estudian la relación entre las bacterias Buchnera aphidicola BCc y Serratia symbiotica, que habitan dentro del pulgón Cinara cedri, en unos órganos especiales llamados bacteriomas. Este grupo ha encontrado que el genoma de B. aphidicola es más pequeño que el que se encuentra en bacterias similares pero de vida libre.

Este fenómeno conocido como "reducción del genoma" es bastante frecuente en la Naturaleza cuando se dan fenómenos de simbiosis. De hecho las mitocondrias presentes en nuestras células lo han sufrido. Simplemente, el endosimbionte va perdiendo funciones biológicas porque el hospedador se las cubre y ya no las necesita. Por ejemplo, los aminoácidos (la comida) se los da sintetizados el hospedador al endosimbionte, aso que éste pierde la capacidad metabólica de sintetizarlos. Pero claro, la segunda parte del trato simbióntico es que el endosimbionte debe de dar algo a cambio al hospedador. En el caso de las mitocondrias, son ellas las que nos permiten "respirar" y utilizar el oxígeno para nuestro metabolismo celular.

Pero si es una cosa tan "normal", ¿qué tiene de especial la reducción genómica en B. aphidicola?

Lo sorprendente es que la reducción ha sido enorme. El genoma de esta bacteria es de 420 kilobases y codifica para 362 proteínas. Ese tamaño es dos tercios más pequeño que el tamaño de otras bacterias endosimbiontes del género Buchnera. Pero ahí no se acaba la cosa. Se han perdido tantas funciones que el endosimbionte parece que es "inútil" para la vida del pulgón. En otras simbiosis, Buchnera es la responsable de sintetizar el aminoácido esencial triptófano y la vitamina riboflavina. En este caso esas funciones se han perdido. De hecho parece que es el otro endosimbionte, Serratia symbiotica, el que está manteniendo a Buchnera y al pulgón tras haber captado ambas funciones entre otras.

Entonces ¿Para qué sirve tener a Buchnera como endosimbionte si el trabajo ya lo hace Serratia? La hipótesis que propone el grupo valenciano es que esto es el "fin de una larga amistad" que ha durado unos cientos de millones de años. Al dejar de ser útil para el pulgón, el destino más probable para Buchnera es su extinción y su reemplazamiento por S. symbiotica.

Y es que con las cosas de comer no se juega

La diarrea de Popeye




Hace un par de años sonaron todas las alarmas en los servicios sanitarios del estado de California. Comenzaron a llegar un montón de gente a los servicios de urgencia con diarreas producidas por la cepa de Escherichia coli 0157:H7. Esta cepa es bastante famosa, sobretodo desde que se la detecto en los años 80 como causante de colitis hemorrágicas por consumo de hamburguesas mal cocinadas. De hecho algunos medios de comunicación y diversas organizaciones consideraron que las gastroenteritis producidas por esta bacteria eran una especie de "castigo divino" que afectaba a los comedores de comida basura.

Bueno, pues ahora resulta que también los que comen "comida ecológica" también pueden sufrir el "castigo" de consumir E. coli O157:H7.

Los que llegaban corriendo a los servicios de urgencia no eran habituales comedores de comida basura, sino de todo lo contrario. Eran habituales comedores de espinacas frescas cultivadas y crecidas orgánica y ecológicamente por la compañía Natural Selection Foods LLC of San Juan Bautista, California. Esta compañía es el mayor productor de "comida orgánica" de los USA.

Al parecer el motivo de la contaminación ha sido el uso de "abono orgánico" proveniente de excrementos de animales. Lo de utilizar excremento animal como abono es una práctica antigua y es segura si se hace bien. Y hacerlo bien significa que dichos excrementos deben de ser transformados mediante un proceso de compostaje. El compostaje es un proceso lento, sobretodo si se hace de manera tradicional. Y aquí está el problema.



Natural Selections Foods podrá ser muy "ecológica" pero es una compañía privada. Y como cualquier compañía privada su principal objetivo es vender sus productos, las espinacas orgánicas frescas, para ganar dinero. Como ahora está de moda lo "orgánico y ecológico" la demanda ha aumentado. Así que ante el incremento de demanda Natural Selections Foods respondió aumentando la oferta. El problema es que aumentar la oferta significaba crecer más espinacas, por lo que se necesita más "abono orgánico". La obtención de más excrementos animales no es ningún problema. El cuello de botella estaba en el proceso de compostaje. Era demasiado lento. Así que alguien debió pensar, "Bueno, quizas si acortamos el proceso de compostaje, podemos tener más rápidamente el abono que necesitamos para nuestras espinacas". Y efectivamente, tuvieron abono suficiente para las espinacas, lo único malo es que en ese abono producido más rápidamente, los microorganismos enteropatógenos no habían desaparecido. Con lo cual, las espinacas crecieron verdes, hermosas y contaminadas con E. coli O157:H7.

Y es que las prisas son malas consejeras.



Audio en "El podcast del microbio"

De cómo una mala película puede dejarte sordo



Las infecciones de oído son una típica patología infantil. Generalmente las otitis son tratadas con antibióticos y suelen cursar bien, desapareciendo a los pocos días de iniciarse el tratamiento. Sin embargo, de vez en cuando, aparecen casos en los cuales las otitis se vuelven crónicas y los síntomas duran semanas o meses. Se asume que esas otitis son causadas por microorganismos resistentes a los antibióticos y por ello su persistencia. Lo curioso es que generalmente era raro aislar microorganismos potencialmente patógenos, fueran resistentes a los antibióticos o no, de dichas otitis persistentes.

Parece que se ha encontrado la solución al misterio. Un estudio publicado en el Journal of the American Medical Association, y que se recoge en la web de la revista Nature, muestra que un 92% de los casos de otitis crónica en niños está producido por microorganismos que crecen en biopelículas o biofilms.

Los biofilms son una comunidad de diversos microorganismos que crecen sobre una superficie formando una película o film. Esta comunidad microbiana puede estar poco o muy adherida a dicha superficie. Un biofilm que todos conocemos es el molesto sarro dentario. Se sabe que los microorganismos que crecen en biofilms suelen ser bastante resistentes a la acción de agentes microbicidas como los antibióticos. La razón es sencilla, el agente químico solo ataca a las células más expuestas de la superficie y no puede difundir al interior del biofilm. Generalmente los microorganismos que crecen en biofilm no son fáciles de aislar pues suelen requerir metabolitos o condiciones que solo encuentran dentro de dicha comunidad.



Microfotografia mostrando la complejidad de un Biofilm




Esto explica porque en dichas otitis crónicas no era posible aislar microorganismos y la ineficacia del tratamiento con antibióticos. Pero también puede explicar porque el tratamiento de insertar un tubo quirúrgicamente en el oído puede curar dichas otitis persistentes. La inserción del tubo provoca la rotura del biofilm.

En los biofilms que producen la otitis persistente parece haber unas 50 especies bacterianas distintas. Se están empezando a buscar tratamientos alternativos para destruir o prevenir dichos biofilms. La identificación de algunas de las especies del biofilm permitiría buscar antibióticos específicos contra ellas. Otra estrategia que se ha pensado es la de utilizar microorganismos competidores que se estableciesen formando un biofilm que evitaría la formación del biofilm de patógenos, de una manera análoga al uso de microorganismos probióticos para el establecimiento de la flora intestinal.

Evidentemente ahora se está haciendo una búsqueda para ver si hay más patologías crónicas asociadas con el establecimiento de biofilms. Y entre ellas los candidatos son las inflamaciones de próstata y las infecciones pulmonares en pacientes con fibrosis quística.

Resistance is NOT futile (desafortunadamente para los humanos)



Con el descubrimiento de los antibióticos, la humanidad pensó que los días de las enfermedades causadas por bacterias estaban contados. Pero las bacterias, como cualquier otro ser vivo en el planeta, evolucionan. Así que cuando aparecieron los primeros informes de infecciones producidas por microorganismos resistentes a los antibióticos, solo era cuestión de tiempo y de "selección del más apto" el que estas resistencias pasaran de ser anecdóticos casos clínicos a una de las mayores preocupaciones de la salud pública.

De todas formas se pensó que el arsenal de sustancias antibióticas era tan grande, que no había que preocuparse en demasía. Si aparecía una bacteria resistente a la penicilina (antibiótico que actúa inhibiendo la síntesis de la pared celular) se utilizaba estreptomicina (inhibe la traducción de proteínas) y problema resuelto. Lo malo es que la evolución no descansa, así que aparecieron los microorganismos multirresistentes o "Superbichos" (superbugs). Y el arsenal de antibióticos comenzó a quedarse corto. De hecho, la mayor parte de los antibióticos que usamos actualmente fueron desarrollados en los años 60. Hubo que esperar al comienzo de esta década para que se aprobaran dos nuevos tipos de antibióticos.

Un artículo de la revista Nature nos habla del descubrimiento de un nuevo tipo de sustancia antibiótica: la Platensimicina. Lo interesante de esta sustancia es que es capaz de eliminar cepas de Staphylococus aureus resistente a Meticilina y también a las bacterias resistentes a la Vancomicina. Y eso es importante porque la Meticillina y la Vancomicina son la "última línea de defensa" en cuestión de antibióticos. Si uno tiene la desgracia de tener una infección grave con esos "superbichos" puede empezar a hacer testamento.

La Platensimicina actúa de forma distinta a otros antibióticos. Inhibe a la enzima FabF responsable de la síntesis de los ácidos grasos. Y sin ácidos grasos no se pueden construir membranas biológicas, con lo que el microorganismo muere. La Platensimicina se parece en su mecanismo de actuación a los antibióticos Triclosan e Isoniazida, pero estos últimos no son tan efectivos contra los "superbichos".

El antibiótico ha sido descubierto por un grupo de la compañía Merck utilizando la tradicional técnica de ensayos de extractos ambientales sobre céspedes de Staphylococcus aureus pero con una interesante variación. Las bacterias usadas contenían un RNA inhibidor que causaba un descenso en la cantidad de enzima FabF. Así, las bacterias eran mucho más sensibles a la inhibición de FabF y con ello se aumentaba la sensibilidad del test. De esta forma se encontraron unas 250.000 nuevas muestras que producían dicha inhibición. En una de ellas se aisló a Streptomyces platensis una bacteria habitante de un suelo de Sudáfrica que produce la Platensimicina.

Pero ahora vienen las malas noticias. La Platensimicina es un antibiótico recién descubierto que todavía tiene que recorrer un largo camino hasta llegar a ser medicamento. Por ahora ha sido probada en ratones y en ellos se ha encontrado que debe de ser constantemente administrada para que sea efectiva. Es decir, es muy inestable en el organismo. Mediante diversas técnicas químicas puede aumentarse su estabilidad, pero también puede que se encuentren efectos secundarios adversos o toxicidad.

Y eso es solo el comienzo. Le quedan entre un mínimo de 8 a 10 años de diversas y costosas pruebas clínicas antes de que sea aprobado su uso en humanos por la FDA. Los cálculos más recientes dan una media de unos 800 millones de dólares gastados para poner un medicamento cualquiera en el mercado. Y caso de ser aprobado, la Platensimicina sería un fármaco con muy poco mercado porque sería utilizado como antibiótico de "ultima línea de defensa". Si se utilizase como cualquier otro antibiótico enseguida aparecerían microorganismos resistentes con lo que dejaría de ser útil. De hecho un gran número de compañías farmacéuticas han reducido o cancelado sus programas de investigación de antibióticos debido a lo costosos que son y al poco beneficio económico que puede obtenerse de ellos.

En el caso de Merck parece que se lo están pensando. En un mundo ideal, los seres humanos seriamos muy buenas personas y actuaríamos desinteresadamente (ya puestos, en un mundo ideal no habría enfermedades). Pero en el mundo real, las compañías y sus investigadores han invertido tiempo, esfuerzo y dinero en desarrollar un medicamento que suponen les va a reportar beneficios. Y si no ven beneficios futuros, no hay inversión monetaria; y sin inversión, no hay proyectos de investigación. De todas formas, las compañías no han sido las únicas en quejarse de los altos costes de desarrollo de un medicamento. El año pasado, la Sociedad Americana para las Enfermedades Infecciosas pidió a la FDA que rebaje un poco sus exigencias para que sea más sencillo, rápido y económico aprobar este tipo de medicamentos. También solicitaron que el Estado trabajase en cooperación con las compañías y concediese una rebaja de impuestos a las que se dediquen a dichas investigaciones. En el fondo todo consiste en contestar a la eterna pregunta: "Y esto ¿quién lo va a pagar?".

La dieta del microbio

Hamburguesa de bacterias probióticas

La dieta del pomelo, la dieta de la lechuga, la dieta disociada,... Cuando el verano se acerca una gran parte de la población femenina (y también de la masculina) comienzan a torturarse intentando reducir en unos pocos días todos aquellos excesos culinarios que han disfrutado durante el resto del año. Bueno, parece que la microbiología puede venir en su ayuda.

Más de uno habrá escuchado la historia de que hay personas que por mucho que coman parecen no engordar, mientras que otras que solo comen un poco de lechuga enseguida se les hinchan las carnes. Generalmente se suele explicar este fenómeno refiriéndose a la persona que engorda con la cantinela "Tiene un metabolismo distinto". La explicación a dicha situación parece que tiene que ver más con el metabolismo de los microorganismos intestinales que con el metabolismo de la persona afectada, al menos según los últimos estudios.

En el congreso del 2006 de la ASM, el grupo liderado por Samuel Buck y Jeffrey Gordon en la Washington University de Missouri ha presentado unos resultados muy llamativos sobre la relación entre microorganismos intestinales y obesidad, en concreto sobre el papel jugado por la archaea Methanobrevibacter smithii. Cuando comemos solemos ingerir una gran y diversa cantidad de compuestos. Algunos de esos compuestos son digeridos y metabolizados por nuestro organismo, pero otros son procesados por los microorganismos de nuestros intestinos. La archaea M. smithii es capaz de metabolizar diversos compuestos fibrosos indigeribles para nosotros, pero al hacerlo resulta que los subproductos de dicho metabolismo si son asimilables por nuestro organismo, y generalmente se asimila como se asimilan las grasas. Pero no solo ocurre con la fibra, también puede suceder con las grasas o con los carbohidratos. Es decir, nosotros creemos que estamos comiendo fibra que nos va a permitir adelgazar y este bicho lo que hace es transformarla en algo que luego nuestro cuerpo convertirá en michelines.

Buck y sus colaboradores realizaron el siguiente experimento para demostrar este punto. Tomaron ratones nacidos en ambiente estéril y sin microbios en su intestino. A unos cuantos les dieron una dosis de una bacteria intestinal típica de los mamíferos llamada Bacteroides thetaiotaomicron (B. theta para los amigos). A otros les dieron esa bacteria pero acompañada de M. smithii. Lo primero que notaron los investigadores es que los ratones que portaban a M. smithii tenían 100 veces más B. theta que si solo se inyectaba esta última sola. Eso ya nos está indicando que hay un sinergismo entre ambos microorganismos.

Pero lo mejor estaba por llegar. Cuando ambos microbios están presentes, B. theta metaboliza mejor los fructanos y los transforma en ácidos grasos que nosotros acumulamos como grasa. ¿Y donde están esos fructanos? Pues es uno de los componentes más comunes de las cebollas, el trigo y los espárragos. Al final encontraron que los ratones con ambos tipos de microbios tenían un 15% más de grasa que los ratones con un solo tipo de microbio.

Se sabe que un 85% de la población humana porta a M. smithii o algún pariente cercano. La pregunta es ¿Tiene los obesos una mayor proporción de ese microorganismo y los delgados una proporción menor? Y para aquellos preocupados por su figura estival ¿Se podrá diseñar una dieta en base a inoculación de microbios probióticos que nos haga adelgazar? El propio Samuel Buck reconoce que se está investigando pero que todo ello aún está en fase de total especulación.

Pero está claro que si tienen éxito es posible que dentro de poco nos vendan una especie de yogurt con inhibidores del crecimiento de M. smithii.



.

Patógeno a la vinagreta



En la revista PLoS Pathogens se publicó un artículo sobre el descubrimiento de una nueva bacteria patógena: Granulobacter bethesdensis. Esta bacteria es responsable de producir infecciones en aquellas personas que sufren enfermedad granulomatosa crónica o CGD por sus siglas en inglés.

La CGD es una enfermedad genética que produce inmunodepresión en la cual el neutrófilo no cumple su papel como debiera (de hecho se la conoce también como Síndrome del Neutrófilo Impotente). Los neutrófilos son parte de la primera línea de defensa contra las infecciones y lo que suelen hacer es fagocitar posibles patógenos y destruirlos. En el caso de los pacientes con CGD, los neutrófilos tienen un defecto en el sistema de fagocitosis (les falla la NADPH oxidasa) por lo que su sistema de lisosomas es poco efectivo al no generar metabolitos oxidantes. Esto permite que algunas bacterias y hongos puedan sobrepasar las defensas y producir infecciones.

El grupo liderado por Steve Holand aisló una bacteria de los nódulos inflamados de un paciente con CGD. Cuando intentaron identificarla por los medios habituales en microbiología clínica se dieron cuenta que no correspondía a ninguna bacteria descrita en los tratados médicos. Así que el siguiente paso fue secuenciar el 16 S rRNA y buscar homologías. La sorpresa fue encontrar que la bacteria más semejante a dicho patógeno era Gluconobacter sachari, perteneciente al grupo de las archiconocidas Bacterias del Vinagre. Estas bacterias oxidan polialcoholes produciendo ácidos orgánicos. En el caso del vinagre el etanol es transformado en ácido acético. Dicho grupo de bacterias son ubicuas, y las podemos encontrar sobretodo en plantas y en frutas. Es la primera vez que se observa que un miembro de este grupo es un patógeno.

Evidentemente, una cosa es aislar un microorganismo y otra cosa es demostrar que es un patógeno. Así que lo que hicieron fue demostrar que Granulobacter bethesdensis cumplía los postulados de Koch. Y los cumplía. Una bonita combinación de métodos del siglo XXI con métodos del siglo XIX para descubrir a un nuevo patógeno.
.